UGEB2530A Game and strategic thinking Solution to Assignment 2

Due: 9 Feb 2015 (Monday)

1. Copy the following game matrices and circle all saddle points of the matrix. Solution:
(a) The game has no saddle point.
(b) The saddle point is $(1,2)$ which is 1 .
2. Solve the zero sum games, that is, find a maximin strategy for the row player, a minimax strategy for the column player and the value of the game, with the following game matrices. Solution:
(a) The maximin strategy for row player:
$p=\left(\frac{1-0}{3+1+1-0}, \frac{3+1}{3+1+1-0}\right)=\left(\frac{1}{5}, \frac{4}{5}\right) ;$
The minimax strategy for column player:
$q=\left(\frac{1+1}{3+1+1-0}, \frac{3-0}{3+1+1-0}\right)=\left(\frac{2}{5}, \frac{3}{5}\right) ;$
The value of game:
$\left.v=\frac{3-0}{3+1+1-0}\right)=\frac{3}{5}$).
(b) The maximin strategy for row player:
$p=\left(\frac{1-4}{-2-5+1-4}, \frac{-2-5}{-2-5+1-4}\right)=\left(\frac{3}{10}, \frac{7}{10}\right) ;$
The minimax strategy for column player:
$q=\left(\frac{1-5}{-2-5+1-4}, \frac{-2-4}{-2-5+1-4}\right)=\left(\frac{4}{10}, \frac{6}{10}\right) ;$
The value of game:
$\left.\left.v=\frac{2-20}{-2-5+1-4}\right)=\frac{11}{5}\right)$.
3. Solve the zero sum games with the following game matrices Solution:

From the graph, it can be seen that the value of the game: $v=1$ and $p=\frac{2}{3}$.
And if we reduce the game matrix to:
$\left(\begin{array}{cc}-1 & 3 \\ 5 & -3\end{array}\right)$
We have, the the maximin strategy for row player is $\left(\frac{2}{3}, \frac{1}{3}\right)$.
And $q=(0.5,0.5)$ in the reduced game.
Therefore, the minimax strategy for column player: $(0,0.5,0.5)$.
(b) First transpose the matrix negatively and we get the graph:

From the graph, it can be seen that the value of the game: $v=-\frac{3}{7}$ and $p=\frac{2}{3}$.
And if we reduce the game matrix to:
$\left(\begin{array}{ll}-2 & -3 \\ -3 & -1\end{array}\right)$
We have, the the maximin strategy for row player is $p^{\prime}=\left(\frac{2}{3}, \frac{1}{3}\right)$.
And $q=(0.5,0.5)$ in the reduced game.
Therefore, the minimax strategy for column player: $q^{\prime}=\left(0,0, \frac{2}{3}, \frac{1}{3}\right)$. For the original game, we have:
$p=\left(0,0, \frac{2}{3}, \frac{1}{3}\right), q=\left(\frac{2}{3}, \frac{1}{3}\right)$.
4. Solve the zero sum game with game matrix: Solution:
(a) First, reduce the game to the following game matrix:
$\left(\begin{array}{ccc}2 & 3 & 10 \\ 7 & 5 & 2\end{array}\right)$
(0,7)
From the graph, it can be seen that the value of the game: $v=4.4$ and $p=0.3$.
And if we reduce the game matrix to:
$\left(\begin{array}{cc}3 & 10 \\ 5 & 2\end{array}\right)$
We have, the the maximin strategy for row player is $(0.3,0.7)$.
And $q=(0.8,0.2)$ in the reduced game.
Therefore, for the original game, we have:
$p=(0,0.3,0,0.7), q=(0,0.8,0,0.2)$.

5. Solution:

(a) $a \leq-2$.
(b) i. $v=\frac{6-a}{-6-a}$, therefore if $v=0, a$ has to be 6 .
ii. The game matrix is:

$$
\left(\begin{array}{cc}
-3 & 1 \\
6 & -2
\end{array}\right)
$$

The maximin strategy for row player: $p=\left(\frac{2}{3}, \frac{1}{3}\right)$
The minimax strategy for column player: $q=\left(\frac{1}{4}, \frac{3}{4}\right)$

